
COMPARATIVE STUDY OF HUFFMAN CODING,
SBAC AND CABAC USED IN VARIOUS VIDEO
CODING STANDARS AND THEIR ALGORITHM

ABSTRACT

This paper represents the Algorithm for various
Coding standards such as Huffman coding, Syntax
based arithmetic coding and Context Adaptive Binary
Arithmetic Coding used in MPEG, H.263 and H.264
respectively and their analysis. We found that average
bit per symbol (average code word length) for Huffman
coding is nearly equal to Entropy which is the basic
requirement, for different bit rate PSNR is calculated
with and without SBAC and finally we discuss Block
diagrams of CABAC codec of H.264/AVC and
Modified parallel algorithm for CABAC.
Experiments demonstrate that this SBAC provide the
improvement of up to 1dB over conventional H.263.
For a set of test sequences representing typical
material used in broadcast applications and for a
range of acceptable video quality of about 30 to 38 dB,
average bit-rate savings of 9%-14% are achieved.
Key Words: CABAC, VLC, Transform Coefficient, DC
coefficient for INTRA blocks

 I. VARIABLE-LENGTH CODING

 A variable-length encoder maps input symbols to a
series of code words (variable length codes or VLCs).
Each symbol maps varying length but must each
contain an integral number of bits. Frequently-
occurring symbols are represented with short VLCs
whilst less common symbols are represented with long
VLCs. Over a sufficiently large number of encoded
symbols this leads to compression of data.

 II. HUFFMAN CODING
 In computer science and information theory,
Huffman coding is an entropy encoding
algorithm used for lossless data compression.
 The term refers to the use of a variable-length code
 table for encoding a source symbol (such as a
character in a file) where the variable-length code
table has been derived in a particular way based on
the estimated probability of occurrence for each
possible value of the source symbol. It was developed
by David A. Huffman while he was a Ph.D. student
at MIT, and published in the 1952 paper "A Method
for the Construction of Minimum-Redundancy
Codes”[9].
Huffman coding assigns a VLC to each symbol based
on the probability of occurrence of different

symbols. It is necessary to calculate the probability
of occurrence of each symbol and to construct a set of
variable length code words.

A.GENERATING THE HUFFMAN CODE TREE

Figure 1: Huffman Code tree for Five Symbols

 Table-1: Huffman Code for Five Symbols

 The average bit per symbol (average code word
 length) is then

 bitsinmessageofLengthXpL
5

1i
i∑

=

=

 L = 0.4 X 2 + 0.2 X 2 + 0.2 X 2 + 0.1 X 3 +

 0.1 X 3 = 2.2 bits ……………………(1)

 Which is very close to the entropy given by

 i2

5

1i
i plogpH(x) ∑

=

−= ………. (2)

SYM
BOL

PROBABILITY CODE

A

B

C

D

E

0.4 0.4 0.4
 0.6

0.2 0.2 0.4 0
 0.4

0.2 0.2 0.2

0.1 0.2

0.1

Message A B C D E
Probabilities 0.4 0.2 0.2 0.1 0.1
Code Word 00 10 11 010 011

[1]Imran Ullah Khan
Research Scholar,

Dept. Electronics & Comm. Engg Mewar
University, Mewar

imranuk79@gmail.com

[2]M.A.Ansari, Senior Member IEEE
Dept. Electrical Engineering, SOE

Gautam Budha University, Gr. Noida
ma.ansari@ieee.org

 1

 1

 0
 1

0

 0

 1

1

 1

 0

 0

 1

1

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

313

IJSER © 2013
http://www.ijser.org

IJSER

mailto:imranuk79@gmail.com
mailto:ma.ansari@ieee.org

 B. ALGORITHM FOR HUFFMAN CODING

1. List source symbol (messages) in the order of
 decreasing probability.
2. The two source symbols of lowest probability
 are assigned numbers 0 and 1.
3. These two source symbols are combined Into a
 new message .
4. The probability of this new message is Equal
 to the sum of probabilities of the two original
 symbols.
5. The probability of this new message is Placed
 in the list according to its value.
6. Repeat this procedure until we are left with
 only two source symbols, for which a 0 and
 a 1 are assigned.

Figure 1 & 2 shows an example of Huffman Coding of
five symbols, A-E. Their probabilities are shown in the
second column. In the next column the two smallest
probabilities are added and combined probability is
included in the new order. The procedure continues to
the last column, where a single probability 1 is reached.
Starting from the last column for every branch of
probability of a 0 is assigned to the top and a 1 in the
bottom[9]. The corresponding codeword is read off by
following the Fixed models are effective when the
sequence from right to left. Although in fixed word
length each sample is represented by three bits, they are
represented in variable length code from two or four
bits.

 III. ARITHMETIC CODING

The entropy encoder converts a series of symbols
representing elements of the video sequence into a
compressed bit stream suitable for transmission or
storage. An arithmetic encoder converts a sequence of
data symbols into a single fractional number and can
approach the optimal fractional number of bits
required to represent each symbol[8].

Figure 2 : H.263 Structure of SBAC Block layer
SBAC- Syntax based arithmetic coding
a-INTRADC- DC coefficient for INTRA blocks
b- TCOF1 c- TCOF2 d- TCOF3
e- TCOF4
TCOEF-Transform coefficients

 IV. SYNTAX BASED ARITHMETIC CODING

Huffman coding can be optimum if the symbol probability
is an integer power of 1/2 which is usually not the case.
Arithmetic coding is a data compression technique that
encodes data by creating code string which represent a
fractional value on the number line between 0 and 1[2]. It
encourages clear separation between the model for
representing data and the encoding of information with
respect to that model. Another advantage of arithmetic
coding is that it dispenses with the restriction that each
symbol must translate into an integral number of bits,
thereby coding more efficiently.
It actually achieves the theoretical entropy bound of
compression efficiency for any source .
In other words arithmetic coding is a practical way of
implementing entropy coding. There are two types of
modeling used in arithmetic coding: Fixed model and
adaptive model[5]. Characteristics of the data source are
close to the model and have little fluctuation. In the
adaptive model, the assigned probabilities May Change as
each symbol is coded, based on the symbol Frequencies
seen so far. Each symbol is treated as an individual unit
and hence there is no need for a representative sample of
text. Initially all the counts might be same, but they update
as each symbol is seen.

A. DEFINING A MODEL

In general, arithmetic coders can produce near-optimal
Output for any given set of symbols and probabilities (the
optimal value is −log2P bits for each symbol of
probability(P),compression algorithms that use arithmetic
coding start by determining a model of the data basically a
prediction of what patterns will be found in the symbols of
the message. The more accurate this prediction is the closer
to optimal the output will be

Example: A simple, static model for describing the output of
 a particular monitoring instrument over time might
 be:

• 60% chance of symbol NEUTRAL
• 20% chance of symbol POSITIVE
• 10% chance of symbol NEGATIVE
• 10% chance of symbol END-OF-DATA

 For the four-symbol model above:

 The interval for NEUTRAL would be [0, 0.6)
 The interval for POSITIVE would be [0.6, 0.8)
 The interval for NEGATIVE would be [0.8, 0.9)
 The interval for END-OF-DATA would be [0.9,1)

B. ALGORITHM OF ARITHMETIC COING FOR
 ABOVE XAMPLE

The process starts with the same interval used by
the encoder: [0,1), and using the same model,
dividing it into the same four sub-intervals that the

Block Layer

a b c d e

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

314

IJSER © 2013
http://www.ijser.org

IJSER

encoder must have. The fraction 0.538 falls into the
sub-interval for

(1) NEUTRAL, [0, 0.6); this indicates that the first
symbol the encoder read must have been
NEUTRAL, so this is the first symbol of the
message.() Next divide the interval [0, 0.6) into sub-
Intervals:

(2) The interval for NEUTRAL would be [0, 0.36) –
 6 0% of [0, 0.6)

 (4). The interval for POSITIVE would be [0.36,0.48)
 20% of [0, 0.6)

(5). The interval for NEGATIVE would be [0.48,
 0.54) - 10% of [0, 0.6)
(6). The interval for END-OF-DATA would be [0.54,
 0.6). -- 10% of [0, 0.6).
7. Since .538 is within the interval [0.48, 0.54), the
 second symbol of the message must have been
 NEGATIVE.

Again divide our current interval into sub-intervals:

• The interval for NEUTRAL would be [0.48,
0.516)

• The interval for POSITIVE would be [0.516,
0.528)

• The interval for NEGATIVE would be [0.528,
0.534)

• The interval for END-OF-DATA would be
[0.534, 0.540).

Now .538 falls within the interval of the END-OF-DATA
symbol; therefore, this must be the next symbol. Since it
is also the internal termination symbol, it means the
decoding is complete. If the stream is not internally
terminated, there needs to be some other way to indicate
where the stream stops. Otherwise, the decoding process
could continue forever, mistakenly when all symbols
have been encoded, the resulting interval unambiguously
identifies the sequence of symbols that produced it.
Anyone who has the same final interval and model that is
being used can reconstruct the symbol sequence that must
have entered the encoder to result in that final interval. A
diagram showing decoding of 0.538 (the circular point)
in the example model.

Consider the process for decoding a message encoded
with the given four-symbol model. The message is
encoded in the fraction 0.538 (using decimal for clarity,
instead of binary; also assuming that there are only as
many digits as needed to decode the message.) reading
more symbols from the fraction than were in fact

encoded into it

 Figure 3: Example for Arithmetic coding

V. OVERVIEW OF CONTEXT-BASED
 ARITHMETIC CODING (CABAC) IN
 H.264.

 H.264/MPEG-4 AVC is the latest video
compression standard that achieves the same video
quality with almost half of the bit rate than previous
video coding standards [1].
First a given non-binary value syntax element will
pass to binarization to form a uniquely bin-string
.Second except for suffix of syntax element motion
vector and level information, all of bins from
binarization will enter into decision mode, and a
probability model will be selected to assign context
Model[14]. The selection of Probabilities models
depends on previously encode syntax element or
bins. After receiving bin an context, AC can encode
and output the compressed data directly. AC can
encode and output the compressed data almost half
of the bit rate than previous video coding standards
[1].
In which, the entropy coder, Context-based Adaptive
Binary Arithmetic Coding (CABAC), plays an
important role and can save, 9%~14% of bit rate in
typical broadcast applications [15]. However, the
design and implementation of the CABAC is
difficult due to its inherent bit-serial nature. The
coding result of one bit often has a direct effect on
the coding process of the successive bits.
CABAC is used as one of the entropy coding method
for H.264 video coding that is consisted of three
stages Binarization, Context modeling and arithmetic
coding (AC).First a given non-binary value syntax
element will pass to binarization to form a uniquely
bin-string .Second except for suffix of syntax
element motion vector and level information[11], all
of bins from AC consist of two sub-engines and is
classified in three modes
(1) “Decision mode” that includes adaptive
 probability models and interval maintainer.
(2) “Bypass mode” for fast encoding of

 symbols.
(3) “Termination mode” for ending of

 encoding.
Successful entropy coding depends on accurate
models of symbol probability. Context-based
Arithmetic Encoding (CAE) uses local spatial and/or
temporal characteristics to estimate the probability of
a symbol to be encoded. Due to high correlation
between the symbols in the image data, if the
neighboring symbols of a, b, c are mainly 1 then it

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

315

IJSER © 2013
http://www.ijser.org

IJSER

 Figure 4: Block diagrams of CABAC codec of
 H.264/AVC

Figure 5: Modified parallel algorithm for CABAC

 Where SE-Syntax Element
 AC-Arithmetic coding

 Figure 6: CABAC Decoding Flow

BIT
PACKING

OUTPUT

SE

AC

Context
memory

Context index
generation

Bit-stream
update

Range table
access

Binary
Arithmetic
coding

Binarization

Probability
update

write

read

 6

 7

 15

 16

 17

 STOP

 18

10

 8

 20

 19

21

 13

 14

 9

 11

 12

 START

 1

 5

 2 3

 4
Context
 Modeler

Binary
Arithmetic
Decoding

Debinarizer

Bin String

Syntax
Element

Context
 Modeler

Binary Arithmetic
Coding Engine

Bitt Stream

 Binarizer

Syntax
Element

Bin String

Context
 Modeler

CABAC Encoder

CABAC Decoder

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

316

IJSER © 2013
http://www.ijser.org

IJSER

Where

1 IS First MB of Slice

2 Initialization context memory & other CABAC
 parameters

3 Determine Top/Left neighbor MBs for Current
 MB
4 MB parameters initialize

5 Load info from global neighbor memory to local
 memories
6 Decode MB type and 8X8 type

7 IS skip MB?

8 IS intra?

9 Decode IPCM MB

10 IS IPCM?

11 Read intra prediction mode

12 Read chroma intra prediction mode

13 Read reference frame infromation

14 Read motion vector differential info

15 Read CBP info

16 Read transform flag info

17 Read Delta quantization info

18 Read coefficient info

19 Store current MB info in global neighbor
 memory
20 Package current MB info in global neighbor
 memory

21 IS last MB of slice

neighboring symbols are mainly 0 the assigned

probability of x=1 should be reduced. Thus we can

define the context for coding a 1 symbol as:

Context=22c+21b+20a=4c+2b+a……………….…(3)

For the binary values of a,b,c the context has a value
between 0 and 7. Higher values of context indicate a
higher probability should be assigned for coding of 1.

 VI. SIMULATION RESULTS

 (i)The Entropy of the symbols which is the minimum
 average bits required to code the symbols can be
 calculate as;

 ∑
=

−=
n

i
ii ppxH

1
2log)(

………….(4)

...(5)2.1219....(1/0.1)0.1log(1/0.1)0.1log
(1/0.2)0.2log(1/0.2)0.2log(1/0.4)0.4logH(x)

22

222

=++
++==

 Which is nearly equal to average bits per symbol (average code
 word length) =2.65 bits

(ii) The software for video codec used in this work is test
 model No.8 (TMN 8) version 3.0 developed by university

 of British Columbia Canada. This coder can accept
 input video of various formats and includes almost all
 options including that for advanced mode defined for
 H.263 standard.

 The tests are performed on standard video sequence
 SALESMAN” (QCIF,176x144,300 frames, 4:2:0 f ormat)
 The snapshot of this video sequence is shown in fig. (2).The
 performance is compared in terms of average Peak
 signal to noise ratio (PSNR) using following relationship;

(6)..........V)........U,Y,each(for)
MSE
255(20log)

MSE
255(log10PSNR 10

2
10 ==

Where MSE is Mean square error

(7)....................................y)]e(x,y)[i(x,
XY
1MSE

X

1x

Y

1y

2∑∑
= =

−=

Where i(x,y) = intensity of input pixel(for each Y,U,V)
e(x,y) = intensity of output pixel(for each Y,U,V)
The PSNR for entire video sequence is defined in terms of
average PSNR

)8(..............................V)U,Y,each(forPSNR(i)
t
iPSNRAverage

t

1i
∑
=

=

Where t is total number of frames in video sequence with each

 frame of dimension XY and PSNR(i) is the PSNR value for ith
 frame and Y,U,V are standard luminance and chrominance
 signals respectively.

 Table 2 gives the summary of results obtained for Huffman code
and Entropy for various values of probability.

 Table 3 gives the summary of results obtained in this work
regarding the performance of H.263 video codec (Salesman
sequence) for Syntax Based Arithmetic Coding at different
target bit rates. It is observed that for SBAC improvement in
PSNR is around 0.5 dB.

Figure 7: Snapshot of “Salesman” video sequence

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

317

IJSER © 2013
http://www.ijser.org

IJSER

 Table 2: Entropy vs. Huffman codes

Table 3 : Simulation results for SBAC

 VII. CONCLUSION

In this paper we discuss the Algorithm for various
Coding standards such as Huffman coding, Syntax
based arithmetic coding and Context Adaptive
Binary Arithmetic Coding used in MPEG, H.263 and
H.264 respectively.
We found that average bit per symbol (average code
word length) for Huffman coding is nearly equal to
Entropy which is the basic requirement. For different
bit rate PSNR is calculated with and without SBAC
and there is a improvement of 0.02 – 0.5 dB with the
use of SBAC.
Finally we discuss Block diagrams of CABAC codec
of H.264/AVC and Modified parallel algorithm for
CABAC.For a set of test sequences. Also the
CABAC decoding flow diagram.

 (a)

 (b)
 Figure 8:(a) Entropy vs. rates achieved by Huffman coding.
 (b) Comparative performance of H.263 Coder
 with and without SBAC
 Where BPP-Bit per pixel

 PSNR-Peak Signal to Noise ratio

 REFERENCES

 [1] M.Ghanbari,”Video Coding: an introduction to standard
 codes;”IEE press, London 1999.
[2]Langdon G.G.An introduction to arithmetic coding IBM
 journal, res. Develop, 28:2, pp.135-149, 1984.
[3] www.ieee.org
[4] “ITU-T H.263 Encoder, version 2”,Signal Processing
 and Multimedia Group, University of British Columbia,
 Canada.
 [5] http:\\www.ubvideo.com
 [6]“Compressed video communications”, by Abdul
 H.Sadka,published by John Wiley and sons, 2002.
[7]R. Aravind, R.Civanlar, and
A.R.Reibman,“Packet loss resilience of MPEG-
2scalable video coding algoriths,” IEEE Trans.
Cirsuits and System video Technolology, vol. 6, pp.
426-435, Oct.1994

 Probabili
ty

Average code word
length(Huffman

Code)
Entropy

1. 0.25 0.5 0.5
2. 0.20 0.4 0.45
3. 0.18 0.54 0.48
4. 0.15 0.45 0.42
5. 0.12 0.36 0.36
6. 0.06 0.24 0.244
7. 0.04 0.16 0.18

S.No. Without SBAC With SBAC

 OBR
(kbps)

PSNR
(dB)

OBR
(kbps)

PSNR
(dB)

1. 20.05 30.18 20.05 30.22
2. 40.10 32.71 40.10 32.99
3. 60.14 34.91 60.14 34.95
4. 80.16 35.99 80.16 35.84
5. 100.23 37.47 100.23 37.53
6. 120.23 38.10 120.2 38.01
7. 140.24 39.23 140.24 39.65
8. 160.25 40.17 160.25 40.02
9. 180.27 41.41 180.27 41.15
10. 200.29 42.42 200.29 41.49

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

318

IJSER © 2013
http://www.ijser.org

IJSER

http://www.ieee.org/

 [8] G. G. Langdon, “An introduction to arithmetic
coding”, IBM Journal of Research and Development,
Vol. 28, No. 2, pp.135-149 Mar. 1984.
[9] D. A. Huffman, “A method for the construction
of minimum redundancy codes,”Proceedings IRE,
vol.40, pp. 1098-1101, 1952.
[10] Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification
(ITU-T Rec. H.264/ISO/ IEC 14496-10 AVC), Mar.
2003
[11] Marpe. D, Schwarz. H, Wiegand. T, “Context-
based adaptive binary arithmetic coding in the
H.264/AVC video compression standard,” IEEE
Transactions on Circuits and Systems for Video
Technology, Volume 13, Issue 7, July 2003,p.p 620
– 636.
[12] Ha. V.H.S, W. S. Shim, and J. W. Kim, “Real-
time MPEG-4 AVC/H.264 CABAC entropy coder,”
in Internationa Conference on Consumer Electronics
Digest of Technical Papers, p.p 255 - 256 , Jan. 8-12,
2005
 [13] R. R. Osorio and J. D. Bruguera, “High-
Throughput Architecture for H.264/AVC CABAC
Compression System”, IEEE Transactions on
Circuits and Systems for Video Technology, Vol.16,
No.11, pp.1376-1384, Nov. 2006.

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

319

IJSER © 2013
http://www.ijser.org

IJSER

